Выбор k для кросс-валидации зависит от размера и природы ваших данных. Есть несколько рекомендаций: ▪️Для больших наборов данных часто используют меньшие значения k, чтобы сбалансировать точность оценки и вычислительные затраты. ▪️В целом, если ресурсы ограничены, стоит выбрать меньшее k. ▪️Максимальное значение k может быть равным размеру выборки, n. Тогда мы получаем метод leave-one-out (LOO), при котором каждый фолд состоит ровно из одного образца. Хорош для случаев, когда у нас очень мало данных и мы хотим использовать максимальное их количество для обучения модели. ▪️Также можно использовать stratified k-Fold. В этом случае каждый фолд имеет примерно такое же соотношение классов, как и всё исходное множество. Это может пригодиться, если данные несбалансированные.
Выбор k для кросс-валидации зависит от размера и природы ваших данных. Есть несколько рекомендаций: ▪️Для больших наборов данных часто используют меньшие значения k, чтобы сбалансировать точность оценки и вычислительные затраты. ▪️В целом, если ресурсы ограничены, стоит выбрать меньшее k. ▪️Максимальное значение k может быть равным размеру выборки, n. Тогда мы получаем метод leave-one-out (LOO), при котором каждый фолд состоит ровно из одного образца. Хорош для случаев, когда у нас очень мало данных и мы хотим использовать максимальное их количество для обучения модели. ▪️Также можно использовать stratified k-Fold. В этом случае каждый фолд имеет примерно такое же соотношение классов, как и всё исходное множество. Это может пригодиться, если данные несбалансированные.
#junior #middle
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.
In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Библиотека собеса по Data Science | вопросы с собеседований from ms